skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lai, Brian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, we study the 3D volumetric modeling problem by adopting the Wasserstein introspective neural networks method (WINN) that was previously applied to 2D static im ages. We name our algorithm 3DWINN which enjoys the same properties as WINN in the 2D case: being simultaneously generative and discriminative. Compared to the existing 3D volumetric modeling approaches, 3DWINN demonstrates competitive results on several benchmarks in both the generation and the classification tasks. In addition to the standard inception score, the Fréchet Inception Distance (FID) metric is also adopted to measure the quality of 3D volumetric generations. In addition, we study adversarial attacks for volumetric data and demonstrate the robustness of 3DWINN against ad- versarial examples while achieving appealing results in both classification and generation within a single model. 3DWINN is a general framework and it can be applied to the emerging tasks for 3D object and scene modeling 
    more » « less